
Critical behaviour of continuous phase transitions with infinitely many absorbing states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 9671

(http://iopscience.iop.org/0305-4470/39/31/001)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/31
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 9671–9677 doi:10.1088/0305-4470/39/31/001

Critical behaviour of continuous phase transitions
with infinitely many absorbing states

Da-yin Hua1, Lie-yan Wang and Ting Chen

Physics Department, Ningbo University, Ningbo 315211, People’s Republic of China

Received 24 March 2006, in final form 22 June 2006
Published 19 July 2006
Online at stacks.iop.org/JPhysA/39/9671

Abstract
A lattice gas model is proposed for the A2 +2B2 → 2B2A reaction system with
particle diffusion. In the model, A2 dissociates in the random dimer-filling
mechanism and B2 dissociation is in the end-on dimer-filling mechanism. A
reactive window appears and the system exhibits a continuous phase transition
from a reactive state to a covered state with infinitely many absorbing states.
When the diffusion of particle A and AB is included, there are still infinitely
many absorbing states for the continuous phase transition, but it is found that
the critical behaviour changes from the directed percolation (DP) class to the
pair contact process with diffusion (PCPD) class.

PACS numbers: 05.70.Ln, 64.60.Ht

1. Introduction

Recently, a study on the pair contact process with diffusion (PCPD) or annihilation fission
process (AF) 2A → ∅, 2A → 3A suggested that the diffusion of the particles should introduce
a new kind of critical behaviour which is different from the well known universality classes
[1–7]. Although the model has attracted much attention in the past few years, it is not
yet clear whether its critical behaviour presents an independent universality class [8]. This
model without the diffusion was first investigated by Jensen and the critical behaviour of
the continuous phase transition with infinitely many absorbing states belongs to the directed
percolation (DP) class [9]. When the particle diffusion is introduced, there are only two
absorbing states: one is a vacuum state and another is that there is only one particle which can
diffuse in the whole system.

In the present paper, we investigate a lattice gas model for the A2 + 2B2 → 2B2A reaction
system with particle diffusion on a heterogeneous catalytic surface. The dimer–dimer surface
reaction system has been investigated on the basis of the well-known Langmuir–Hinshelwood
mechanism [10, 11], no reactive window has been found if the desorption of the adsorbed B
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atom is ignored. In the previous lattice models, the dimer adsorbing trial is in the random dimer
filling mechanism, in which a pair of nearest-neighbour (NN) sites is selected randomly for the
dimer adsorption [12–16]. Therefore, the configuration of the adsorbate on surface does not
affect the selection of a pair. However, for an actual reaction on surface, an adsorption process
of a dimer involves in a very complicated dissociation on surface, and its dissociation depends
on the surrounding chemical environment. Some authors have studied another dissociation
mechanism of a dimer [16–20], which is called ‘end-on dimer filling’ mechanism where one
end of the dimer adsorbs on a vacant site firstly and then the dimer can occupy another vacant
site and dissociate into two atoms if there is one vacant NN site for the first site. Therefore,
the selection of a pair for the dimer adsorbing trial is no longer purely random because the
configuration of the adsorbate on the catalytic surface significantly affects the selection [20].
It is obvious that the adsorption probability for a dimer increases in the end-on mechanism
and then it can take an important influence on the dynamical behaviour of the surface reaction
system.

In our model, A2 dissociates in the random dimer filling mechanism but B2 dissociation
is in the end-on dimer filling mechanism. A reactive window appears and the system exhibits
a continuous phase transition with infinitely many absorbing states from a reactive state to
an ‘A + AB + vacancy’ covered state. When the particle diffusion is included, there are still
infinitely many absorbing states for the continuous phase transition, but the critical behaviour
changes from the DP class into the PCPD class.

2. Model and simulation algorithm

We model the catalytic surface by a square lattice, which is in contact with an infinite reservoir
of the two types of dimer, labelled here by A2 and B2. These dimers can be adsorbed onto the
lattice and dissociate into two atoms, which occupy two NN sites of the lattice, and they can
react according to the following steps:

(1) A2(g) + 2v → 2A(ads)

(2) B2(g) + 2v → 2B(ads)

(3) A(ads) + B(ads) → AB(ads) + v
(4) AB(ads) + B(ads) → B2A(g) + 2v

in which the subscript ‘(g)’ denotes a species in gas phase and ‘(ads)’ indicates the adsorption
state of a species on the lattice surface. Here ‘v’ indicates a vacant site on the lattice surface.

In our system, the dimer dissociation can follow one of the two mechanisms, which are
random and end-on dimer filling mechanism. For the random dimer filling mechanism, first
randomly pick one site, (if empty) then randomly select a NN site from the four NN sites, the
dimer fills only if both sites are empty. As a result, a pair of two NN sites is selected randomly
for the dimer adsorption.

The end-on dimer filling mechanism: first randomly pick one site, ‘i’, and if ‘i’ and at
least one of the four NN sites are empty, choose another site randomly only from the empty
NN sites. The dimer occupies the pair of two empty sites. Therefore, the selection of a pair
for the dimer adsorbing trial is no longer purely random.

The adsorption–reaction process begins with a random collision of a gas molecule on
an L × L square lattice. The colliding molecule is chosen to be a dimer B2 with a given
probability yB which is the fraction of B2 in gas phase and a dimer A2 with a probability
1 − yB. If a dimer A2 is adsorbed successfully, then check the six NN sites, the adsorbed A
atom reacts with a B atom on a NN site to form AB on the site occupied by A, AB also can
immediately react with a B atom on its NN sites to form a B2A molecule which desorbs at
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(a)

(b)

Figure 1. (a) The Monte Carlo simulation result of the coverage of A, B and AB against the
fraction yB; (b) production rate of B2A against yB, d = 0.0.

once and leaves two vacant sites. If a dimer B2 is adsorbed successfully, B atom can react
with A or AB to form AB or B2A, then there are three possibilities (a) formation of B2A is
prior to the formation of AB, (b) formation of AB is prior to the formation of B2A and (c) both
formations have an equal probability. In present work, we have taken the first case. In reality,
from our simulation results and previous works [10, 11], the difference of the three reaction
paths has little influence on the kinetic behaviour.

For the particle diffusion process, a site is chosen randomly; if it is occupied by a particle,
then a NN site is selected randomly; if this NN site is vacant, then the particle jumps to this
site and the corresponding reaction step of the particle can occur at once as described above.

In our simulation, A2 dissociates in the random dimer filling mechanism but B2

dissociation is in the end-on dimer filling mechanism and the diffusion of particle A and
AB is included.

At the beginning of a simulation step, a random number ρ0 between 0.0 and 1.0 is
generated. A diffusion attempt (ρ0 < d) or an adsorption–reaction process (ρ0 > d) is
performed, respectively, where d indicates the particle diffusion probability. We take our
simulation on a lattice 128 × 128 with a periodic boundary condition and an initial empty
surface.

3. Simulation results and discussion

When the particle diffusion is ignored, the simulation result is shown in figure 1. For a
yB value, the simulation results are averaged over 400 independent samples and a sample
runs 5000 Monte Carlo steps (MCS) (a MCS means a Monte Carlo attempt for every lattice
site). From figure 1, it is found that there are two phase transitions at y1 and y2. When
yB < y1, the surface is covered by A, AB and isolated vacancies eventually and the reaction
ends. When yB > y2, the surface eventually is covered by B and isolated vacancies and the
reaction ends also. Between y1 and y2, there are A, AB, B and pair of vacant sites on the
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Figure 2. (a) The Monte Carlo simulation result of the coverage of A, B and AB against the
fraction yB (d = 0.50); (b) production rate of B2A against yB under different diffusion probability.

surface and then the reaction can continue. The system exhibits a continuous phase transition
at y1 from an active reaction state to an ‘A + AB + vacancy’ covered state and a discontinuous
phase transition at y2 to a ‘B + vacancy’ covered state.

It is obvious that there are infinitely many absorbing states for the continuous phase
transition when the lattice size tends to infinity. We have investigated the critical behaviour by
calculating the ratio of static critical exponents with Monte Carlo simulation1 and the critical
behaviour belongs to the DP universality class as we expected [17–20].

When the diffusion of the particle A and AB is considered, the simulation results are
shown in figure 2. With the diffusion probability increasing, the continuous transition point
decreases but the discontinuous transition point increases, then the width of the active reaction
window increases. It is obvious that, for the continuous phase transition, there are still infinitely
many absorbing states of A + AB. Due to the PCPD problem mentioned above, the influence
of the particle diffusion on the critical behaviour of the continuous phase transition is very
interesting.

As we know, the upper critical dimension for the PCPD model is two dimensions [8].
Therefore, we investigate the critical behaviour of the continuous phase transition with
mean field theory including the particle A and AB diffusion process. According to the
site approximation method [21], we ignore all spatial correlations and obtain the evolution
equation as below:

dPA

dt
= 2yA(1 − d)P 2

V(1 − PB)3 − 2yB(1 − d)PV[1 − (1 − PV)4]
[
PA(1 − PAB)2

+ P 2
A(1 − PAB) + P 3

A

] − dPAPV[1 − (1 − PB)3] (1)

1 When the diffusion process is neglected, defining the order parameter ρ = per cent of pairs of vacant sites, we
can estimate the transition point and the ratio of two static critical exponents by Monte Carlo simulation simply,
y1 = 0.4938 ± 0.0002, β/υ⊥ = 0.81 ± 0.01, β/υ‖ = 0.45 ± 0.01.
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Figure 3. The numerical integration result from the mean field equations (1)–(3): (a) the coverage
of A, B and AB against yB; (b) production rate of B2A (d = 0.8).

dPB

dt
= 2yB(1 − d)PV[1 − (1 − PV)4](1 − PA − PAB)3

− 2yA(1 − d)P 2
V

[
PB(1 − PB)2 + 2P 2

B

]

− dPAPV
[
PB(1 − PB)2 + 2P 2

B

] − dPABPV[1 − (1 − PB)3] (2)

dPAB

dt
= 2yA(1 − d)P 2

V(1 − PB)2PB + 2yB(1 − d)PV[1 − (1 − PV)4]
[
PA(1 − PAB)2

+ P 2
A(1 − PAB) + P 3

A

] − 2yB(1 − d)PV[1 − (1 − PV)4][1 − (1 − PAB)3]

+ dPAPVPB(1 − PB)2 − dPABPV[1 − (1 − PB)3] (3)

where yA + yB = 1, PA, PB, PAB and PV are the coverage of particle A, B, AB and vacant
site on surface, respectively. PA + PB + PAB + PV = 1, d is the diffusion process probability.
In equation (1), the first term describes the coverage increase of particle A because of A2

adsorption, the second term describes the coverage decrease of particle A because of B2

adsorption and third term means the coverage decrease of particle A due to A diffusion and
reaction with particle B. We can obtain equations (2) and (3) in a similar way.

Although the mean field theory implies that a particle may meet all of the other particles
with an equal probability which means a rapid particle diffusion, the evolution equation still
includes the diffusion terms of particle A and AB because a reaction process may occur after
the diffusion process of A and AB particle. In fact, the diffusion terms in the equations have
no effect on the critical behaviour of the continuous phase transition except the production rate
under the site approximation condition. The production rate is 2yA(1 − d)P 2

VP 2
B + 2yB(1 − d)

PV[1 − (1 − PV )4][1 − (1 − PAB)3] + dPAPVP 2
B + dPABPV[1 − (1 − PB)3], the beginning

two terms describe the contribution of A2 and B2 adsorption processes to the reaction rate
respectively, the last two terms denote the contribution of A and AB diffusion processes.

From equations (1)–(3), PV = 0 is a poisoned steady state. Following a numerical
integration of equations (1)–(3) with an empty initial condition under different yB, we can
obtain the transition behaviour with yB varying. The calculation result is shown in figure 3.
For every yB value, the numerical integration continues until the system enters into a stationary
state. We can see that the mean field theory predicts the continuous phase transition and the
discontinuous phase transition very well which are in consistence with the Monte Carlo
simulation results in figures 1 and 2, although the two critical points are not predicted
accurately.
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Figure 4. (a) Local slope of the order parameter ρ(t) decay for yB = 0.250 01, 0.250 005,

0.250 000, 0.249 995, 0.249 990 (from bottom to top) from equations (1)–(3); (b) the double
logarithmic plot for ρ versus ε (ε = yB − yc) (d = 0.8).

Considering the particle diffusion process, two isolated vacant sites can meet together
to form a pair of vacancies and then the reaction can continue. From figure 3(a), we can
define an appropriate order parameter ρ = 1 − PA − PAB. According to the local slopes
of order parameter ρ(t) to estimate the critical point, we define the decay exponent αeff(t):
αeff(t) = − ln[ρ(t)/ρ(t/m)]

ln(m)
, where m is an integer number, in our calculation m = 10. We can

calculate the decay critical exponent of the order parameter and the continuous transition
point yc following the numerical integration of equations (1)–(3). As shown in figure 4(a),
we can obtain αeff = 0.5 ± 0.005 and yc = 0.250 000 ± 0.000 005. Furthermore, we can
define the order parameter exponent: ρ ∝ (yB − yc)

β . Following the numerical integration of
equations (1)–(3) in the adjacency of the transition point yc, we measure the order parameter
ρ from the stationary state, then we can estimate β = 0.98 ± 0.02 from the results in
figure 4(b). It is shown that the critical behaviour of the continuous phase transition
belongs to the PCPD class when the particle diffusion is considered. On the other hand,
we show a double-logarithmic plot of ρ(t)t0.5 as a function of t in figure 5, the pronounced
downward curvature of the data in the double-logarithmic plot discloses a strong long time
logarithmic correction to scaling [3], but the numerical integration over 106 helps to estimate
the critical point and the decay exponent accurately which are in consistence with the results in
figure 4(a).

There are still infinitely many absorbing states for the continuous phase transition after
the particle diffusion is introduced, but they can be divided into two subsets, one is that there
is no vacant site on the surface and another is that there is only one vacant site. The structure
of the infinitely many absorbing states is changed and the critical behaviour changes from the
DP universality class to the PCPD class.

In conclusion, we investigate a lattice gas model for the A2 + 2B2 → 2B2A reaction
system in two dimensions. A2 dissociates in the random dimer-filling mechanism but B2
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ρ

Figure 5. The double logarithmic plot ρ(t)t0.50–t for yB = 0.249 99, 0.250 00, 0.250 01 (from
bottom to top) (d = 0.8).

dissociation is in the end-on dimer filling mechanism. A reactive window appears and the
system exhibits a continuous phase transition with infinitely many absorbing states from a
reactive state to an ‘A + AB + vacancy’ covered state and a discontinuous phase transition to a
‘B+vacancy’ covered state. When the diffusion of particle A and AB is included, there are still
infinitely many absorbing states for the continuous phase transition, but they can be divided
into two subsets. It is found that the critical behaviour changes into the PCPD class.

Acknowledgments

This work is supported by Ningbo Youth Foundation (2003A62007 and 2004A610023) and
National Natural Science Foundation of China(10575055).

References

[1] Carlon E, Henkel M and Schollwock U 2001 Phys. Rev. E 63 036101
[2] Howard M J and Tauber U C 1997 J. Phys. A: Math. Gen. 30 7721
[3] Hinrichsen H 2001 Phys. Rev. E 63 036102
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